

La stimulation (médicamenteuse/électrique) de la conscience chez les patients en état de conscience altérée

Bertrand Hermann, MD, PhD 2 février, 2023

Journée EVC-EPR 2023

État Végétatif Chronique et État Pauci-Relationnel

Pas de conflit d'intérêt

MESOCIRCUIT HYPOTHESIS

- Thalamo-cortical loops & consciousness
- Key role of the central thalamus in activating fronto-parietal cortices
- Striatal lesions are responsible for a inhibition of the central thalamus
- → unresponsiveness/unconsciousness

PHARMACOLOGICAL INTERVENTIONS

Pharmacological treatments

- Dopaminergic agents
- GABAergic agents

AMANTADINE

- Dopamine agonist & NMDA-antagonist
- Evidence in TBI
 - Randomized placebo-controlled trial
 - n = 184, subacute TBI
 - 4 weeks regimen (up to 200 mg/day)
 - 0,25 pt CRS-R/week
- Long-term effects?
 - No effect on cognition at D28 and D60 after TBI Hammond, J Neurotrauma 2018
- Non traumatic brain injury (anoxia)?

Giacino, NEJM 2012

Only recommended treatment in DoC 4-16 weeks after a traumatic brain injury

ZOLPIDEM

- Hypnotic
- GABA agonist
- ~ 5% paradoxical effect
- Transient
- 10 mg, sometimes higher doses necessary
- Increase activity/metabolism in prefrontal areas

Should probably be tested in all DoC patients

respiratory depression

OTHER DRUGS

- Other dopamine agonists
 - Apomorphine, Bromocriptine, Levodopa
 - Only case reports
 - Theoretical advantages over amantadine (mesocircuit hypothesis)

Fridman, Brain Inj 2009 & 2010

- Other GABA agonists (BZD, Baclofen)
- Calcium channels blockers
- Various neurostimulants

Not enough evidence

Find Studies ▼

Home > Search Results > Study Record Detail

Treating Severe Brain-injured Patients With Apomorphine

ClinicalTrials.gov Identifier: NCT03623828

Recruitment Status 1 : Recruiting

First Posted 1 : August 9, 2018

Last Update Posted 1 : January 10, 2020

See Contacts and Locations

INVASIVE BRAIN STIMULATION

Pharmacological treatments

- Dopaminergic agents
- GABAergic agents

Brain stimulation

- Invasive
 - Deep brain stimulation (DBS)
 - Vagus nerve stimulation (VNS)

DEEP BRAIN STIMULATION (DBS)

- First report from 1968! (McLardy, Trans. Am. Neurol. Assoc 1968)
- Review of ten studies (Bourdillon*, Hermann*, Front Neurosci 2019)
 - 78 patients
 - Wide heterogeneity
 - Etiology
 - Site of stimulation : ARAS, central thalamus, intralaminar nuclei, pallidum
 - Intensity (50 Hz and 100 Hz)
 - Design with mostly open-label
 - Improvement in 30/67 UWS and 6/11 MCS
 - Confounding of spontaneous recovery (<1y)

Schiff, Nature 2007

Lemaire, ACTN 2018

Need of double-blind design Better patient selection? Invasivness

VAGUS NERVE STIMULATION (VNS)

Surgically implanted

- One VS/UWS since 15 years
- CRS-R 5 \rightarrow 10
- VS/UWS → MCS
- Increased metabolism and posterior functional

Transcutaneous auricular VNS

- Similar changes
- Increased precuneus/posterior cingulate resting state fMRI functional connectivity

Promising Need more data

Corazzol, Current Biology 2017

NON-INVASIVE BRAIN STIMULATION

Drugs

- Dopaminergic agents
- GABAergic agents

Brain stimulation

- Invasive
 - Deep brain stimulation (DBS)
 - Vagus nerve stimulation (VNS)
- Non-invasive
 - Transcranial magnetic stimulation (TMS)
 - Transcranial electrical stimulation (tES)
 - Focused ultrasound

REPEATED TRANSCRANIAL MAGNETIC STIMULATION (rTMS)

Study	Design/Control	Population	Target/ Stimulation parameters	Behavioral effects	Electrophysiological effects	Side effects
Louise-Bender Pape et al., 2009	Case report/ None	1 VS/UWS patient	Right DLPFC/30 sessions over 6 weeks of 10 Hz rTMS (300 paired-pulse) at 110% RMT	No significant (trend) improvement of DOC Scale	Improvement of latencies of auditory brainstem evoked potentials	None
Piccione et al., 2011	Case report/ Median nerve stimulation	1 MCS patient	Left M1/2 sessions of 20 Hz rTMS (10 trains of 100 stimuli) at 90% RMT	Increased CRS-R score lasting 6 h after stimulation	Increase of absolute and relative power in delta, alpha and gamma band	None
Manganotti et al., 2013	Open-label/ None	6 patients (3 VS/UWS and 3 MCS)	Left or right M1/1 session of 20 Hz rTMS (10 trains of 100 stimuli) at 120% RMT	Improvement of consciousness in only 1 patient	Increase of absolute and relative power in delta, alpha and gamma band and reactivity in the responding patient	None
Pape et al., 2014	Open-label/ None	2 patients	Right DLPFC/30 sessions over 6 weeks of 10 Hz rTMS (300 paired-pulse) at 110% RMT	Not assessed	Not assessed	One epileptic
Xie et al., 2015	Open-label/ Case-control	20 patients (2 coma, 11 VS/UWS, 7 MCS) of which 10 were stimulated	Right DLPFC/28 sessions over 28 days of 5 Hz rTMS	6 out of 10 patients stimulated showed CRS-R improvement persisting at 4 weeks	Increase of alpha power and decrease of delta power	Not reported
Naro et al., 2015a	Not randomized/ Sham	10 patients (all VS/UWS) and 10 healthy controls	Right DLPFC/1 session of 10 Hz rTMS (1000 pulses) at 90% RMT	No significant group effect but small short-lasting improvement in 3 patients on the motor subscale of the CRS-R	No significant effect at the group level, but some short-lasting modulation of motor evoked potentials in the 3 responding patients	None
Cincotta et al., 2015	Cross-over RCT/ Sham	11 patients (all VS/UWS)	Left M1/5 sessions over 5 days of 20 Hz rTMS (1000 pulses) at 90% RMT	No significant differences in CRS-R scores between stimulation and sham	No significant changes on EEG (Synek classification)	None
Liu et al., 2016	Cross-over RCT/ Sham	10 patients (5 VS/UWS, 5 MCS)	Left M1/1 session of 20 Hz rTMS (1000 pulses) at 100% RMT	No behavioral effect	Significant changes in hemodynamic parameters (mean and peak velocity of middle cerebral artery) on transcranial doppler only in MCS	None
Bai et al., 2017	Case report/ None	1 MCS patient	Left DLPFC/ 20 sessions over 20 days of 10 Hz rTMS (1000 pulses) at 90% RMT	Improvement of CRS-R after 20 sessions	Concomitant improvement of perturbational complexity index, global mean field power and motor evoked potential.	None
Xia et al., 2017	Prospective/ Not controlled	16 patients (11 VS/UWS and 5 MCS)	Left DLPFC/ 20 sessions over 20 days of 10 Hz rTMS (1000 pulses) at 90% RMT	Improvement of CRS-R score in all MCS patients and 4/11 VS/UWS persisting 10 days after stimulation.	None	None
Xia et al., 2017	Prospective/ Not controlled	18 patients (12 had repeated sessions for 20 days)	Left DLPFC/ 20 sessions over 20 days of 10 Hz rTMS (1000 pulses) at 90% RMT	Overlapping population with the previous study. No statistical testing.	Decreased low-frequency band power and increased high-frequency band power, especially in MCS	None
He et al., 2018	Cross-over RCT/ Sham	6 patients (3 VS/UWS, 2 MCS and 1 EMCS)	Left M1/5 sessions over 5 days of 20 Hz rTMS (1000 pulses) at 100% RMT	No significant differences in CRS-R. One patient improved after real stimulation.	Increase delta, theta, alpha and beta power spectra in the responding patient.	Not reported
Liu et al., 2018	Cross-over RCT/ Sham	7 patients (2 VS/UWS and 5 MCS)	Left M1/5 sessions over 5 days of 20 Hz rTMS (1000 pulses) at	No significant changes of CRS-R scores	No significant changes in functional connectivity on EEG	None

- Mostly uncontrolled trials
- Small sample sizes
- Heterogeneity
 - Patients
 - Site
 - Frequency
 - Numbers of session
- Risk of seizure
- Logistically difficult

No evidence
Maybe not the best NIBS tool in
this population

Bourdillon*, Hermann* et al., Front Neurosci 2019

TRANSCRANIAL ELECTRIC STIMULATION (tES)

Common principles

- Low intensity currents (~2 mA) applied to the scalp
- Safety
- Online effects and after-effects

transcranial direct current stimulation

tACS

transcranial <u>alternating</u> current stimulation

Entrainment

TRANSCRANIAL DIRECT CURRENT STIMULATION (tDCS)

ORIGINAL ARTICLE

Proof of concept

Transcranial Direct Current Stimulation Effects in Disorders of Consciousness

- n=10
- titration (sham, 1 mA, 2 mA)
- left dorsolateral prefrontal (DLPFC) or precentral cortex
- 4/10 patients improved

Physical Medicine

Sham-controlled randomized double-blind study

Angelakis, ACRM 2014

Thibaut, Neurology 2014

- n = 55 patients
- One session 2 mA session L-DLPFC
- 13/30 MCS and 2/25 VS/UWS improved

Table 2	Treatmen	at effects (i.e., change in CRS-R total score) for patients in VS/UWS and MCS						
		Difference tDCS - sham	Median	p 25	p 75	p Value		
VS/UWS		0.3 ± 1.4	0	0	0	0.952		
MCS		1.6 ± 2.5	1.5	0	4	0.003		

TRANSCRANIAL DIRECT CURRENT STIMULATION (tDCS)

Repeated sessions

ORIGINAL ARTICLE

Controlled clinical trial of repeated prefrontal tDCS in patients with chronic minimally conscious state

Aurore Thibaut^{a,b}, Sarah Wannez^a, Anne-Francoise Donneau^c, Camille Chatelle^{a,d}, Olivia Gosseries^a, Marie-Aurélie Bruno^a, and Steven Laureys^a

Thibaut, Brain Inj 2017

Home-based 4-weeks tDCS

Randomized controlled trial of home-based 4-week tDCS in chronic minimally conscious state

Géraldine Martens, MSc ^{a. *}, Nicolas Lejeune, MD ^{a. b}, Anthony Terrence O'Brien, MD ^c, Felipe Fregni, MD, PhD ^c, Charlotte Martial, MSc ^a, Sarah Wannez, MSc ^a, Steven Laureys, MD, PhD ^{a. **, 1}, Aurore Thibaut, PhD ^{a. c, 1}

Martens, Brain Stim 2018

SUMMARY: tDCS STUDIES IN DOC ON BEHAVIOR

Single-session

- Thibaut et al., Neurology 2014 (n=55)
- Bai et al., Neuroimage Clinical 2017 (n=17)
- Bai et al., Int J Neurosci 2018 (n=18)

Repeated sessions

- Angelakis et al., ACRM 2014 (n=10)
- Thibaut et al., Brain Injury 2017 (n=16)
- Estraneo et al., J Neurol Sci 2017 (n=13)
- Zhang et al., Front Neurol 2017 (n=26)
- Martens et al., Brain Stim 2018 (n=27)
- Cavinato et al., Clin Neurophysiol 2019 (n=24)
- Wu et al., Neural Plast 2019 (n=10)
- Martens, NeuroImage Clinical 2020 (n=46)

- Best evidence to date, but still some inconsistent restults
- MCS > VS/UWS
- Transient improvement
- Repeated > single sessions
- Most studies with prefrontal stimulation

OTHER STIMULATION TOOLS?

Focused ultrasounds

Towards other minimally- or non-invasive brain stimulation tools?

Olfactorv nerve stimulation?
From Nose to Brain: Un-Sensed Electrical Currents
Applied in the Nose Alter Activity in Deep Brain
Structures 3

Weiss, Cereb Cortex 2016

EXPLAINING THE HETEROGENEITY OF TREAMENT EFFECT

Many factors influence treatment effects and notably NIBS

tES-specific

- Number of session
- Site
- Montage
- Intensity
- Duration

Non-specific

- Task
- Drugs (Ca2+ & Na-channel blocker ?)
- Genetic (BDNF)
- Brain networks and structural anatomy

BRAIN ACTIVITY & RESPONSE TO tDCS

Spectral power & connectivity

Electric fields modeling

Hermann, Scientific Reports 2020

TOWARDS INDIVIDUALIZED STIMULATION

Modeling of electric fields

Realistic, vOlumetric Approach to Simulate Transcranial electric stimulation

Huang et al., J Neural Eng 2019

Measures of brain activity during stimulation

Whole-brain modeling & simulation of brain-state transition

Awakening: Predicting external stimulation to force transitions between different brain states

Gustavo Deco^{a,b,c,d,e,1}, Josephine Cruzat^{a,b}, Joana Cabral^{f,g,h}, Enzo Tagliazucchi^{i,j}, Helmut Laufs^{j,k}, Nikos K. Logothetis^{l,m,1}, and Morten L. Kringelbach^{f,g,h,1}

Deco, PNAS 2019

FROM ONE-SIZE-FITS-ALL....

... TO PERSOLANIZED STIMULATION!

TAKE-HOME MESSAGE

- The only recommended treatment in DoC is Amantadine in TBI
- No guidelines for other treatments
- Zolpidem should (probably) be tested in all chronic DoC patients
- Most promising treatment so far is transcranial direct current stimulation (tDCS)
 - MCS > UWS / Repeated sessions / Left dorsolateral prefrontal cortex
- Need to understand (and reduce) treatment effects heterogeneity
 - Investigate treatment effects through measures of brain activity
 - Personalized stimulation
 - Minimally invasive stimulation ? (VNS, FUS, ...)

Journée EVC-EPR 2023

État Végétatif Chronique et État Pauci-Relationnel

Merci pour votre attention

SUMMARY: tDCS STUDIES IN DOC ON BEHAVIOR

Study	Design/ Control	Population	Stimulation parameters	Behavioral effect	Electrophysiological effect	Side effects
Angelakis et al., 2014	Prospective/ Sham	10 patients (7 VS/UWS, 3 MCS)	5 sessions (20 min) of sham, 1 and 2 mA anodal L-DLPFC or L-SMC tDCS (F3/C3- Fp2; 25 cm2-35cm2)	CRS-R increase in the 3 MCS patients	Not assessed	None
hibaut et al.,	Cross-over RCT/ Sham	55 patients (25 VS/UWS, 30 MCS)	Single session (20 min) of 2 mA anodal L-DLPFC tDCS (F3-Fp2; 35 cm ²)	Significant increase of CRS-R only in MCS patients.	Not assessed	None
Naro et al., 2015a	Cross-over RCT/ Sham	25 patients (12VS/UWS, 10 MCS, 2 EMCS)	Single session (10 min) of 1 mA anodal orbito-frontal cortex (Fp-Cz; 25–35 cm²)	No effect	Changes in M1 excitability and premotor-motor connectivity in some DoC patients assessed by TMS	None
Naro et al., 2016b	Cross-over RCT/ Sham	20 patients (10 VS/UWS and 10 MCS)	Single session (20 min) of 2 mA cerebellar 5 Hz oscillatory tDCS (medial cerebellum-left buccinator muscle; 16 cm ²)	Improvement of CRS-R in MCS patients.	Increase in fronto-parietal coherence and power in theta and gamma band in MCS patients	None
3ai et al., 2017	Cross-over RCT/ Sham	18 patients (9 VS/UWS, 9 MCS)	Single session (20 min) of 2 mA anodal L-DLPFC (F3-Fp2; 25 cm ²)	No effect	Changes in cortical excitability assessed by TMS-EEG	Not reported
3ai et al., 2017	Cross-over RCT/ Sham	17 patients (9 VS/UWS, 8 MCS)	Single session (20 min) of 2 mA anodal L-DLPFC (F3-Fp2; 25 cm ²)	No effect	Increase fronto-parietal coherence in the theta band in MCS	Not reported
hang et al., 017	Parallel RCT/ Sham	26 patients (11 VS/UWS, 15 MCS)	20 sessions (20 min) of 2 mA anodal L-DLPFC (F3-Fp2; 35 cm2) over 10 consecutive days	Significant improvement in CRS-R in MCS patients	Increased P300 amplitude in MCS during an auditory oddball paradigm	None
hibaut et al., 017	Cross-over RCT/ Sham	16 patients (all MCS)	5 sessions (20 min) of 2 mA anodal L-DLPFC (F3-Fp2; 35 cm ²) over 5 days	Significant improvement of CRSR [in 9/16 (56%)] at 5 days, persisting at 12 days.	Not assessed	None
luang w. et al., 017	Cross-over RCT/ Sham	27 patients (all MCS)	5 sessions (20 min) of 2 mA anodal posterior parietal cortex tDCS (Pz-Fp2; unknown)	Significant improvement of CRS-R after 5 days of stimulation, but no persistence at 10 days.	Not assessed	None
estraneo et al., 1017	Cross-over RCT/ Sham	13 patients (7 VS/UWS, 6 MCS)	5 sessions (20 min) of 2 mA anodal L-DLPFC F3-Fp2; 35 cm²) over 5 days	No effect on CRS-R after single or repeated sessions	Improvement of background rhythm in some patients	None
Martens et al., 2018	Cross-over RCT/ Sham	27 patients (all MCS) in rehabilitation facilities or at home.	20 sessions (20 min) of 2 mA anodal L-DLPFC F3-Fp2; 35 cm²) over 4 weeks	No significant effect, but trend toward CRS-R improvement after 4 weeks, lasting at 12 weeks	Not assessed	One epileptic seizur